
Network
modelling

285

International Journal of Numerical
Methods for Heat & Fluid Flow

Vol. 19 Nos. 3/4, 2009
pp. 285-302

# Emerald Group Publishing Limited
0961-5539

DOI 10.1108/09615530910938290

Received 2 February 2007
Revised 29 November 2007
Accepted 4 February 2008

Network modelling of unsteady
natural convection flow over a

vertical plate submitted to
surface temperature oscillation

Joaquı́n Zueco
Department of Thermal Engineering and Fluids,

Technical University of Cartagena, Cartagena, Spain

Abstract

Purpose – The unsteady natural convection flow of a viscous dissipative fluid along a semi-infinite
vertical plate subjected to periodic surface temperature oscillation is investigated.
Design/methodology/approach – An electrical-network model based on the Network Simulation
Method is developed to solve the governing equations. The accuracy and effectiveness of the method
are demonstrated.
Findings – The increasing of the viscous dissipation and the decreasing in the Prandtl number lead to
a decrease in Nusselt number and an increase in the local skin-friction. Also, it is found that the
oscillations of the Nusselt number and of the local skin-friction depend on the frequency and amplitude
of the oscillating surface temperature. For Pr ¼ 1,000 and " ¼ 0.005 (realistic case) the effect of the
viscous dissipation is appreciable at large distances from the leading edge.
Research limitations/implications – The inclusion of viscous dissipation in the energy equation,
except of the theoretical interest, has applications in very special cases, for example, gases at very low
temperature and also for high Prandtl number liquids.
Originality/value – The influence of the non-uniformity of wall temperature on the heat transfer by
natural convection along of the plate together with the viscous dissipation of the fluid are analysed by
means of a new numerical technique based on the electrical analogy.
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The current issue and full text archive of this journal is available at
www.emeraldinsight.com/0961-5539.htm

Nomenclature

C ¼ capacitor

Cfx ¼ local skin-friction coefficient

cp ¼ specific heat

k ¼ thermal conductivity

g ¼ acceleration due to gravity

G ¼ control-voltage current-source

Gr ¼Grashof number

Grx ¼ local Grasfof number

h ¼ heat transfer coefficient

j ¼ flux density

J ¼ electric current

L ¼ height of the plate

N ¼ number of cells

Nux ¼ local Nusselt number

Pr ¼Prandtl number

R ¼ resistor

t ¼ time

T ¼ temperature

u, v ¼ velocities

U, V ¼ dimensionless velocities

x ¼ vertical co-ordinate

X ¼ dimensionless vertical co-ordinate

The author is grateful to the reviewers for their excellent comments which helped to improve
the paper.
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y ¼ horizontal co-ordinate

Y ¼dimensionless horizontal
co-ordinate

z ¼ constant

Greek symbols

� ¼ diffusivity thermal

� ¼ thermal expansion coefficient

� ¼ dimensionless amplitude

" ¼ dissipation parameter

� ¼ dimensionless temperature

� ¼ dynamic viscosity

� ¼ density

� ¼ dimensionless time

�w ¼ local wall shear stress

	 ¼ kinematic viscosity

! ¼ frequency

� ¼ dimensionless frequency

�X ¼ axial thickness of the cell

�Y ¼ radial thickness of the cell

Subscripts

c ¼ characteristic

i ¼ associated with i nodal point

j ¼ associated with j nodal point

i, j ¼ associated to the centre on the
cell

max ¼maximum

w ¼wall

1 ¼ ambient

Introduction
In recent decades, many authors have solved this classical problem, Ostrach (1953) with a
vertical isothermal plate or Sparrow and Gregg (1956) with a uniform flux plate, due to its
relevance in a wide range of industrial applications, such as electronic components,
furnaces, finned cooling surfaces, solar collectors and others. This problem is generally non-
similar and only there are only a few exceptions for some particular boundary conditions at
the wall, uniform surface heat flux, Sparrow and Gregg (1956), temperature variations of the
power and exponential form, Sparrow and Gregg (1958), and a line source on an adiabatic
plate, Jaluria and Gebhart (1977), where analytical approaches can be used, so, it is usually
necessary to solve a set of coupled non-linear partial differential equations numerically.

The problem of steady-free convection heat transfer from a plate with an arbitrary
surface temperature variation was solved by Kao et al. (1977) using methods of local
similarity and local non-similarity. They employed the strained coordinates method by
means of the transformation of the axial coordinate by using an integral function of the
proposed wall temperature to estimate the wall heat transfer. Lee and Yovanovich (1993)
solved this problem by means an approximate method based on a linearization of the
conservation equations through the use of an effective velocity. They showed the potential
capability of approximate techniques for problems of this type. Yang et al. (1982) solved
the problem with beside surface heat-flux variations, applying appropriate coordinate
transformations using a Merk-type series solution. They obtained a set of ordinary
differential equations which they later were solved numerically by means of an iterative
procedure. Harris et al. (1998) investigated the transient free convection from a vertical
plate when the plate temperature is suddenly changed, obtaining an analytical solution
(for small values time) and a numerical solution for times before the steady-state is
reached. Polidori et al. (2003) proposed a theoretical approach to the transient dynamic
behaviour of a natural convection boundary layer flow when a step variation of the
uniform heat flux is applied, using the Karman–Pohlhausen integral method.

However, the class of fully numerically methods is the most versatile for handling
general boundary conditions, and is capable of providing solutions very close to exacts
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solutions. Havet and Blay (1999) employed a linearly varying temperature distribution
to study the non-uniformity of wall temperature on heat transfer by steady turbulent
free convection by means of a numerical model based on a finite-volume formulation.
These numerical methods are necessary to solve the problems with surface
temperature oscillation in transient natural convection from a vertical plate. In the
works of Rees (1999) and Li et al. (2001), the surface temperature profile oscillates with
the distance along the plate. Rees (1999) used a combined numerical and asymptotic
analysis to study in detail how sinusoidal surface temperature profiles in the
streamwise direction modify the otherwise self-similar steady boundary layer flow. For
the steady problem with small values of the Grashof number the perturbation method
is employed and an asymptotic solution obtained. The numerical methods for both the
solution of the steady and the unsteady flow cases are obtained with Fourier series
expansion. Li et al. (2001) developed numerical methods using an unsteady approach.
In the paper of Saeid (2004), the surface temperature profile oscillates with time. This
author solved the governing equations numerically using the finite-difference method,
and analysed the effect of the amplitude and frequency of the oscillating surface
temperature.

Other authors have studied different cases of natural convection, so Ho and Tu
(1999) studied the transition into oscillatory natural convection of cold water in a 2-D
vertical rectangular enclosure by means of a finite-difference method. Aydin and Yang
(2000) solved numerically the problem of natural convection in an enclosure with
localized heating from below and symmetrical cooling from the sides. Hossain et al.
(2002) solved the problem of free convection flow along a vertical circular cone with
uniform surface temperature and surface heat flux in a thermally stratified medium
using three distinct methodologies. The finite-element method was used by Cruchaga
and Celentano (2003) to study the natural and mixed convection in obstructed channels.

In the above papers, the viscous dissipation term in the energy equation was not
considered. The viscous dissipation term is always positive and represents a source of
heat due to friction between fluid particles. A variety of expressions are used in the
literature for this term like viscous heating, shear-stress heating and viscous work.
Gebhart (1962) was the first who studied this problem, taking into account the viscous
dissipation and defining the typical non-dimensional dissipation parameter, " ¼ g�L/
cp. This number is a completely independent parameter. It has no correspondence with
the Prandtl number not with the Grashof number. Almost all free convection studies
are realised at an ambient temperature of 300 K at 1 atm pressure and at terrestrial
gravity, in this case, the viscous dissipation is neglected in the energy equation, for
most gases and low and moderate Prandtl number liquids. However, in processes
wherein the scale of the process is very large, e.g. on larger planets, in large masses of
gas in space, and in geological processes in fluids internal to various bodies is
important the viscous dissipation effects. Also, for high gravity, for example in gas
turbine blade cooling applications, where the intensity of the body force may be as
large as 104 g, the viscous dissipation effect may affect transport even at small
downstream distances from the leading edge, see Joshi and Gebhart (1981). It is
possible causes a 20 per cent reduction in heat transfer in gases and in common liquids.
Finally, at low temperatures for gases and for high Prandtl number liquids may be
quite significant the viscous dissipation effects. In the previous cases, the viscous
dissipation tends to rise the fluid temperature and this effect has a strong influence on
the results as it assists the upward flow and opposes the downward flow.
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Takhar et al. (1997) solved the problem transient natural in laminar boundary layers
over a semi-infinite vertical plate with power-law variation of wall temperature.
Soundalgekar et al. (1999), using an implicit finite-difference technique, studied the
effect of the dissipation parameter on the time needed to reach steady-state in the
transient free convection flow in a vertical plate, being this time different in function of
the value of viscous dissipation parameter. They demonstrated that there is a rise in
the average skin-friction and a fall in the average Nusselt number due to greater
viscous dissipative heat. Pantokratoras (2005) solved the problem in stationary
situation using the finite-difference method, with isothermal and uniform flux
boundary conditions in the wall taking into account the viscous dissipation. He
confirmed that the viscous dissipation has a strong influence on the results as it assists
the upward flow and opposes the downward flow.

Gokhale and Al Samman (2003) studied the effects of mass transfer and viscous
dissipation on the transient free convection flow of a dissipative fluid along a semi-
infinite vertical plate with constant heat flux. They confirmed that the time required to
reach steady-state is affected of the presence or not of viscous dissipation. In the
presence of viscous dissipative heat, more time is required to reach the steady-state
temperature and velocity than that in the absence of viscous dissipation. Chen (2004)
solved the problem of combined heat and mass transfer in MHD free convection flow of
an electrically conducting fluid along a vertical surface with Ohmic heating and
viscous dissipation. He verified that when the viscous dissipation effect is included, a
considerable reduction in the heat transfer rate occurs, but only slight effects on wall
shear stress are observed.

In this work, the Network Simulation Method (NSM hereafter) is used as the
numerical technique, firstly a spatial discretization is applied to the transient
boundary-layer equations, and a set of ordinary differential equations are obtained, one
for each control volume; later, by applying the electro-thermal analogy, the network
model is obtained, which can be solved by means of a very common program used to
simulate electrical circuits, Pspice (MicroSim, 1994). Today, several graphical interfaces
are available to simplify code generation, with a user interface to view the results (any
voltage or current waveform) of the simulation. This program calculates these voltages
and currents vs time (transient analysis) or vs frequency (alternating current analysis).
Moreover, Pspice also performs other analyse, such as direct current, sensitivity, noise
and distortion.

The method does not require convergence criteria to solve the finite-difference
equations resulting from discretization of the partial difference equations of the
mathematical model, since Pspice does this work; moreover, time remains as a
continuous variable in the model, only requiring finite-difference schemes for the
spatial variable. NSM has been successfully applied to solving several heat transfer
problems: see Alhama et al. (2003) for unsteady heat flux wall estimations, and Zueco
et al. (2004) for applications to the laminar flow of fluids in ducts, Zueco and Alhama
(2006) developed an iterative algorithm for the estimation of the temperature-
dependent emissivity of solid metals, while Zueco and Campo (2006) solved the
transient radiative transfer between the thick walls of an enclosure by means of a new
network model.

The objective of the present paper is to solve the transient natural convection along
a semi-infinite vertical plate subjected to periodic surface temperature oscillation
problem taking into account viscous dissipation, using a new method, and to discuss of
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the advantages and disadvantages of the same. The results obtained and the effect of

the viscous parameter, frequency and amplitude of surface temperature are analysed.

Mathematical model

The quiescent ambient fluid around the plate is at a lower constant temperature, T1,

with u and v denoting, respectively, the velocity components in the x and y direction,

where x is vertically upwards and y is the coordinate perpendicular to x. Under the

usual Boussinesq’s approximation, the transient two-dimensional flow can be shown to

be governed by the following boundary layer equations (including viscous dissipation),

Continuity equation:

@u

@x
þ @v

@y
¼ 0 ð1Þ

Momentum equation:

@u

@t
þ u

@u

@x
þ v

@u

@y
¼ �gðT � T1Þ þ 	

@2u

@y2
ð2Þ

Energy equation:

@T

@t
þ u

@T

@x
þ v

@T

@y
¼ �@

2T

@y2
þ 	

cp

@u

@y

� �2

ð3Þ

with the following initial and boundary conditions:

t � 0; u ¼ 0; v ¼ 0;T ¼ T1 ð4aÞ
t > 0; u ¼ 0; v ¼ 0;T ¼ T1 at x ¼ 0 ð4bÞ
t > 0; u ¼ 0; v ¼ 0;T ¼ Tw þ �ðTw � T1Þ sin!t at y ¼ 0 ð4cÞ
t > 0; u ¼ 0;T ! T1; as y!1 ð4dÞ

where it is considered that the boundary condition of the wall temperature is oscillating

periodically over an average value Tw with frequency ! and amplitude �. The above

equations are written in a non-dimensional form by employing the following boundary

layer dimensionless variables:

U ¼ uL
Gr�1=2

	
;V ¼ v

Gr�1=4L

	
;X ¼ x

L
;Y ¼ y

Gr1=4

L
; � ¼ t	

Gr1=2

L2
;

� ¼ T � T1
Tw � T1

ð5Þ

where L is the wall height, Gr ¼ g�L3(Tw � T1)/	2 is the Grashof number. Then the

governing equations reduce to the following non-dimensional boundary layer

equations:
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@U

@X
þ @V

@Y
¼ 0 ð6Þ

@U

@�
þ U

@U

@X
þ V

@U

@Y
¼ �þ @

2U

@Y2
ð7Þ

@�

@�
þ U

@�

@X
þ V

@�

@Y
¼ 1=Pr

@2�

@Y2
þ " @U

@Y

� �2

ð8Þ

where Pr ¼ 	/� is the Prandtl number and " ¼ g�L/cp the factor that determines the
influence of viscous dissipation. The dimensionless initial and boundary conditions
become:

� � 0; U ¼ 0;V ¼ 0; � ¼ 0 ð9aÞ
� > 0; U ¼ 0;V ¼ 0; � ¼ 0 at X ¼ 0 ð9bÞ
� > 0; U ¼ 0;V ¼ 0; � ¼ 1þ � sinð��Þ at Y ¼ 0 ð9cÞ
� > 0; U ¼ 0; �! 0 as Y!1 ð9dÞ

Taking the length of the semi-infinite plate as L ¼ 1, it consider a rectangular region
with X varying from 0 to 1 and y varying from 0 to Ymax ¼ 15, where X ¼ L
corresponds to the height of the plate and Ymax is regarded as 1. It is ensured that
Ymax lies well outside the momentum and thermal boundary layers. It is necessary to
divide the rectangular region into Z and W grid-spacing respectively. After
experimenting with a few sets of mesh sizes, a region of integration of 40 � 80 has
been used.

Numerical procedure
The method used to solve the problem is the NSM. The discretization of the boundary-
layer equations is based on the finite-difference formulation, only a discretization of the
spatial co-ordinates being necessary, while time remains as a real continuous variable.
The user does not need to manipulate the finite-difference differential equations to be
solved nor to pay attention to the convergence problems, and there are no prerequisites
as regards the time-step required for the convergence since the code Pspice imposed
and adjusted continuously automatically this parameter to reach a convergent solution
in each iteration, according to the given stability and convergence requirements. If a
time-step solution does not converge, the time-step usually can be reduced until the
solutions converge. This time-step reduction is necessary to maintain a reasonable
level of truncation error in the analysis. Details of the local truncation errors can been
found in the thesis of Nagel (1975). However, it is possible to indicate to the program
the value maximum of the time-step (��max), so that the time-step could be smaller
than this value but never larger. As this value decreases, the accuracy increases and
the internal computation speed decreases.

Transient analysis requires a numerical integration algorithm and a method of
dynamically varying the integration time-step to maintain reasonable solution
accuracy. Pspice uses the numerical implicit integration formulae (trapezoidal
integration and Gear’s method) with second order accuracy. The trapezoidal
integration is one of the most popular ones in network transient analysis, due to its
merits of low distortion and absolute stability (A-stability).
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Based up on these equations, an electrical network circuit, whose equations are
formally equivalent to the discretized equations is designed. The electric-thermal
analogy can be applied to the equations continuity, momentum and energy, so that the
variables velocities (U, V) and temperature (�) are equivalent to the variable voltage,
while the velocity fluxes (@U/@X, @U/@Y, @V/@X) and the heat flux are equivalent to the
variable electric current ( J ). NSM simulates the behaviour of unsteady electric circuits
by means of resistors, capacitors and non-linear devices that seek to resemble thermal
systems governed by unsteady linear or non-linear equations. Another noticeable
advantage of the NSM is that it provides both the temperature and heat flux density
fields immediately (without no need numerical manipulation).

The whole network must be converted into a suitable program that is solved by a
computer code in a PC using suitable software, Pspice (MicroSim, 1994) in this case.
The latest version of this simulator adds a completely new solver to the Pspice
simulation engine, which uses sophisticated algorithms to increase simulation speed,
particularly for larger circuits with substantial run times; a also it has slightly
improved convergence characteristics. This means that greater speed and better
convergence can be attained without sacrificing the accuracy that is normally
associated with Pspice.

Among the advantages of the proposed numerical method are:

. time remains as a continuous variable in the model, so, only finite-difference
schemes are required for the spatial variable;

. there are no prerequisites as regards the time-step required for the convergence;

. generally, few programming rules (and few devices) are necessary since the
number of the electrical devices that make up the network is very small
(resistances, condensers and current sources), as is the computation time, so that
it is very simple to represent any electrical circuit;

. it provides the temperature, velocities, gradients of velocity and temperature
(heat flux) fields immediately;

. a wide library of electrical components is available for the future simulation of
more complex processes;

. finally, other additional advantage is that the theorems of conservation and
uniqueness of the flow and potential electrical variables (Kirchhoff laws), are
satisfied in the circuits, some of the equations that normally are inside of the
mathematical model no need to be considered for the design of the network
model, for example in the conservation of the heat flux in the boundary of two
different media and the uniqueness of the temperature in the boundary.

However, the design of the model requires a knowledge of circuit theory fundamentals
and Pspice does not allow data visualization during simulation. However, to help the
user a program in Cþþ (easy and fast to understand) was developed, so that the user
uses it without spending a lot of time in the implementation of the code Pspice
(file ‘‘oscillation.cir’’). This program generates quickly the file for his later execution in
Pspice, and the program permits the reading of the solutions provided by Pspice (file
‘‘oscillation.out’’) in any position and to any time. Besides, after completing the
simulation, Pspice plots waveform results so the designer can visualize circuit
behaviour and determine design validity. Graphical results of each simulation are
presented in Pspice’s Probe window waveform viewer and analyser, where it is possible
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to see the temporal evolution of velocities, temperatures, skin-friction and Nusselt
number any point of the medium. Basically, the NSM uses the most recent advances in
software in the resolution of electrical networks to apply to different kinds of partial
differential equations: elliptical, hyperbolical and parabolic; linear and non-linear, in
1D, 2D and 3D, typical in problems of fluids mechanics or heat transfer.

Alhama (1999) established the connection between the total number of volume
elements (N) and the accuracy of the NSM. For N � 30 for vertical and horizontal
directions, numerical errors are reduced to values below 0.5 per cent nearly along the
whole transient period for 2-D problems. The maximum value of the time-step is
��max ¼ 0.05 s for the isothermal wall case, and ��max ¼ 0.005 s for the oscillation
surface temperature case. Computational times for the same type of problems are
comparables (ever minor) to the other numerical techniques general. This time depends
principally of the accuracy wished, spatial grid and of the ��max. The computational
time maximum is about of 120 s (��max ¼ 0.005 s) and the time minimum of 6 s
(��max ¼ 0.05 s).

Design of the network model
The finite-difference differential equations resulting from dimensionless continuity,
momentum balance and energy equations are obtained in this section. A second-order
central difference scheme has been used to discretize the boundary layers equations
and the resulting system of finite-difference equations are solved employing the Pspice
program.

@U

@Y

� �
i;j

� ðUi;jþ1 �Ui;j�1Þ
ð2�YÞ ð10Þ

@2U

@Y2

� �
i;j

� ðUi;jþ1 þUi;j�1 � 2Ui;jÞ
�Y2

¼ 1

�Y

ðUi;j�1 � Ui;jÞ
�Y

� ðUi;j � Ui;jþ1Þ
�Y

� �
ð11Þ

For the variable X is used a central difference too. The terms ‘‘(Ui,j�1 � Ui,j)/�Y’’ and
‘‘(Ui,j � Ui,jþ1)/�Y’’ represent the electrical currents, JU,i,j��Y and jU,i,jþ�Y, respectively.
They can be modelled by means of two resistor of value ‘‘�Y’’ between the extremes of
Ui,j�1, Ui,j and Ui,j, Ui,jþ1, respectively. However, it is realised a major discretization, so
each resistor is divided into two of values ‘‘�Y/2’’, accord to the expressions following,

@2U

@Y2

� �
i;j

� 1

�Y

ðUi;j�1 � Ui;j��YÞ
ð�Y=2Þ � ðUi;j�Ui;jþ�YÞ

ð�Y=2Þ

� �

¼ 1

�Y

ðUi;j��Y � Ui;jÞ
ð�Y=2Þ � ðUi;jþ�Y � Ui;jþ1Þ

ð�Y=2Þ

� �
ð12Þ

where Ui,j��Y and Ui,jþ�Y are the points extremes of the elemental cell i, j. Figure 1
shows the physical medium reticulation with elementals cells connected between them,
where it is possible observed that the thickness of the elemental cell is �Y. This
connecting requires, equal potentials at the contact points of adjoining cells and equal
outward–inward transference flows in adjoining elements. Therefore, the finite-
difference differential equations are,
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�Y
dUi;j

d�
þ�YUi;j

ðUiþ�X;j � Ui��X;jÞ
�X

þVi;jðUi;jþ�Y �Ui;j��YÞ

¼ �Y�i;j þ
ðUi;j��Y � Ui;jÞ
ð�Y=2Þ � ðUi;j � Ui;jþ�YÞ

ð�Y=2Þ ð13Þ

�YPr
d�i;j

d�
þ�YPrUi;j

ð�iþ�X;j � �i��X;jÞ
�X

þ PrVi;jð�i;jþ�Y � �i;j��YÞ

¼ ð�i;j��Y � �i;jÞ
�Y=2

� ð�i;j � �i;jþ�YÞ
�Y=2

þ "Pr
ðUi;jþ�Y � Ui;j��YÞ2

�Y
ð14Þ

Equations (13) and (14) can be written in the form of Kirchhoff’s law,

jU;i;jþ�Y � jU;i;j��Y � jU;i;j þ jUx;i;j þ jUy;i;j þ jUc;i;j ¼ 0 ð15Þ
j�;i;jþ�Y � j�;i;j��Y � j�;i;j þ j�x;i;j þ j�y;i;j þ j�c;i;j ¼ 0 ð16Þ

Figure 2 shows the network models corresponds to the Equations (15) and (16). In the
Figure 2a, jU,i,jþ�Y and jU,i,j��Y are the currents that leave and enter the cell for
the friction term of U, jU,i,j the current due to the buoyancy term, jUx,i,j and jUy,i,j are the
currents due to the inertia terms of U and V, respectively, while jUc,i,j is the transitory
term. The currents jU,i,jþ�Y and jU,i,j��Y are implemented by means of two resistances
RU,i,j±�Y of values ‘‘�Y/2’’; while the currents jU,i,j, jUx,i,j and jUy,i,j are implemented by
means of voltage control current generators, GU,i,j, GU,�X,i,j and GU,�Y,i,j, respectively;
these voltages are ‘‘�Y �i,j’’, ‘‘�Y Ui,j (Uiþ�X,j � Ui��X,j)/�x’’ and ‘‘Vi,j (Ui,jþ�Y �
Ui,j��Y)’’, respectively; with Uiþ�X,j, Ui��X,j, Ui,jþ�Y and Ui,j��Y being the voltages
(velocities) of the nodes ‘‘i þ �X,j’’, ‘‘i � �X,j’’, ‘‘i,j þ �Y’’ and ‘‘i,j � �Y’’ in the cell of
the momentum equation, while Ui,j is the velocity in the centre of this cell (i,j). jUc,i,j is
implemented by means a capacitor CU,i,j of value ‘‘�Y’’, connected to the centre of each
cell. For the energy equation, similar explanations can be realised to the previous case.
The devices that integrate the network model are the same (Figure 2b), only the actions
of control on the current generators are modified and the value of the condenser. In this
case variable voltage corresponds with the temperature.

Finally, to implement the boundary conditions are employed the following devices
are used:

Figure 1.
Grid system used
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. a voltage-source for the constant values of velocity and temperature; and

. a sinusoidal voltage-source for the sinusoidal temperature variation. As regards
the initial condition, the voltages U ¼ 0 and � ¼ 0 are applied to the capacitors
CU,i,j and C�,i,j.

Figure 2.
Nomenclature and
network model of the
control volume: (a)
momentum balance
equation and (b) energy
balance equation
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From the finite-difference equation corresponding to Equation (1) the velocity
component Vi,j is obtained explicitly:

Vi;j ¼ Vi;j�1 þ
ðUi��X;j � Ui;jÞ�Y

ð2�XÞ for X ¼ 0 ð17aÞ

Vi;j ¼ Vi;j�1 þ
ðUi��X;j � Uiþ�X;jÞ�Y

�X
for X > 0 ð17bÞ

Results and discussion
Figure 3(a) and (b) shows the transient and steady-state velocity profiles (U) and
temperature profiles (�) at the upper end of the wall (X ¼ 1), for air (Pr ¼ 0.72) with no
viscous dissipation considered (" ¼ 0) and a constant temperature wall (�w ¼ 1).
These figures also show the results obtained by Saeid (2004) for comparison. The
excellent degree of agreement of the present results with those of this author using a
fully implicit finite-difference scheme, can be appreciated. We observe from this figure
that both velocity and temperature increase with time to reach maximum values and
then decrease to reach the steady-state. To obtain the steady-state, the condenser of the
network merely has to be omitted.

For practical applications, the principal physical quantities of interest in heat
transfer include the local skin-friction coefficient Cfx ¼ �w/�uc

2 (with �w the local wall

Figure 3.
Velocity and temperature

profiles for air (Pr ¼ 0.72)
at X ¼ 1, " ¼ �¼ 0, for

various values of � :
(a) dimensionless velocity

profiles and
(b) dimensionless

temperature profiles
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shear stress) and the local Nusselt number Nux ¼ h x/k, being h ¼ �k (@T/@y)y¼0 the
convective heat transfer coefficient. Them can been expressed as:

CfxGr3=4 ¼ dU

dY

� �
Y¼0

ð18Þ

NuxGr�1=4
x ¼ �X1=4

�w �ð Þ5=4

d�

dY

� �
Y¼0

ð19Þ

where Grx ¼ g�x3(Tw � T1)/	2 is the local Grashof number.
It should be noted here that the dissipation number is small for most ordinary

engineering devices with common fluids for the gravitational field strength of the
earth, so 4 10�7 m�1 < g�/cp < 4 10�4 m�1. However, gases at very low temperature
(50 K) can have a high value of �/cp and also for high Prandtl number liquids, therefore
the viscous dissipation term must be included in the energy equation. The effect
increasing at large values of x, but in this case is possible to have a flow turbulent. To
sum up, the inclusion of viscous dissipation in the energy equation, except of the
theoretical interest, has applications in very special cases cited before.

Figure 4.
Transient evolution of the
local skin-friction
coefficient for air
(Pr ¼ 0.72) and water
(Pr ¼ 7) at X ¼ 1, � ¼ 0,
" ¼ 0, 1, 2 and 3

Figure 5.
Evolution axial
(X-direction) of the local
skin-friction coefficient for
air (Pr ¼ 0.7) and water
(Pr ¼ 7) with � ¼ 0,
" ¼ 0 and 2, for various
values of �
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Figure 4 shows the transient evolution of the local skin-friction coefficient (Cfx Gr3/4) for
the air (Pr ¼ 0.72) and the water (Pr ¼ 7) for X ¼ 1, with constant wall temperature
(�w ¼ 1 or � ¼ 0) and various values of the dissipation parameter (" ¼ 0, 1 and 2). It
can be seen that an increase of the Prandtl number leads to a decrease in local skin-
friction. Beside, greater viscous dissipative heat causes a rise in the local skin-friction.

Figure 5 shows the axial evolution (X-direction) of the local skin-friction coefficient
for the air (Pr ¼ 0.7) and the water (Pr ¼ 7) with � ¼ 0, " ¼ 0 and 2, for various
values of dimensionless time. This figure also shows the results obtained by Takhar
et al. (1997) for comparison, being the almost identical results. The local skin-friction
coefficient increases with time to reach a maximum. This figure confirms that the
decrease in local skin-friction with increasing Pr and the increase in the local skin-
friction with increased viscous dissipative heat occurred in all points of the wall (all
values of X).

Figure 6 show the periodic oscillation of the local skin-friction coefficient for the air
(Pr ¼ 0.72) at X ¼ 1, with a frequency � ¼ 5, two values of amplitude (� ¼ 0.1 and
0.5) and various values of " ¼ 0, 0.5 and 1. Greater local skin-friction can seen at the
upper end of the wall (X ¼ 1). Beside, an increase in the amplitude leads to an increase
of the local skin-friction extreme (maximum and minimum) values. However, it is also

Figure 6.
Periodic oscillation of the

local skin-friction
coefficient for third

period, air (Pr ¼ 0.72)
with, � ¼ 5, � ¼ 0.1 and

0.5, " ¼ 0, 1 and 2 at
X ¼ 1

Figure 7.
Periodic oscillation of the

local skin-friction
coefficient with �� for

third period, air
(Pr ¼ 0.72) with, � ¼ 0.5,
" ¼ 0 and 2, � ¼ 1, 2 and

5 at X ¼ 1
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possible that for the same value of � and ", the local skin-friction will be greater for a
lower �. It is observed (as in Figure 4) that greater viscous dissipative heat causes a rise
in local skin-friction, but is proportionally greater as X increases.

Figure 7 shows the effect of the oscillation frequency on the local skin-friction
coefficient for air (Pr ¼ 0.72) at X ¼ 1, with � ¼ 0.5, " ¼ 0, 0.5 and 1.0. Different

Figure 8.
Evolution of the local
Nusselt number with
dimensionless time for
Pr ¼ 0.05, Pr ¼ 0.72 (air)
and Pr ¼ 7.0 (water) at
X ¼ 1, � ¼ 0, " ¼ 0, 0.1,
0.5 and 1.0

Figure 9.
Evolution of the local
Nusselt number with X for
� ¼ 0: (a) Pr ¼ 500.0 and
1,000.0, " ¼ 0, 0.005, 0.05
and 0.2 (b) Pr ¼ 0.005,
0.30 and 0.72, " ¼ 0, 0.005,
0.05, 0.2, 1.0 and 2.0
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values (1 and 5) of � are employed. We can see that an increase in the frequency leads
to a decrease in the local skin-friction extreme (maximum and minimum) values.
However, it is also possible that for the same value of � and ", the local skin-friction will
be greater for a higher value of �.

Figure 8 shows the temporal evolution of local Nusselt number for " ¼ 0, 0.1, 0.5
and 1 and Pr ¼ 0.72 and 7.0 with constant wall temperature (�w ¼ 1). The figure also
shows the results of Saeid (2004), for " ¼ 0; as can be seen, they are very close. The
local Nusselt number decreases with time and reaches a minimum value before
increasing slightly to reach the steady-state. It can be observed that an increase in the
Prandtl number leads to an increase in the local Nusselt number, while an increase in
viscous dissipation leads to a decrease in the local Nusselt number.

Figure 9(a) and (b) is plotted the evolution of the local Nusselt number with X for
various values of Pr (0.005, 0.30, 0.72, 500.0 and 1,000.0), " ¼ 0, 0.005, 0.05, 0.2, 1.0 and
2.0, with constant surface temperature boundary condition. It is observed that greater
viscous dissipative heat causes a decrease in local Nusselt number proportionally
greater as X and Pr increase. It can be observed that with Pr ¼ 1,000 and " ¼ 0.005
(realistic case) the effect of the viscous dissipation is appreciable.

Figure 10 shows the effect of the amplitude on the local Nusselt number with
dimensionless time at X ¼ 1, with Pr ¼ 0.72 and � ¼ 5.0, for various values of � (0.5
and 0.1) and of Ec (0, 0.5, 1.0 and 2.0). Note that the oscillations of NuxGrx

�1/4 are
greater for high values of the amplitude; moreover, NuxGrx

�1/4 increases when �
increases. A rise in viscous dissipation heat causes a decrease in the local Nusselt

Figure 10.
Effect of the

dimensionless amplitude
on the local Nusselt

number with
dimensionless time for
third period at X ¼ 1,
" ¼ 0, 1.0, 2.0 and 3.0,

with Pr ¼ 0.72, � ¼ 0.1
and 0.5 and � ¼ 5.0

Figure 11.
Effect of the frequency on
the local Nusselt number

at X ¼ 1 for third period,
with " ¼ 0 and 0.5, with

Pr ¼ 0.72, � ¼ 0.1 and
� ¼ 1.0, 2.0 and 5.0
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number, after which this parameter may become negative, which implies that there are
some points in the boundary layer with temperatures higher than the surface
temperature or that the viscous dissipation heat accelerates this tendency (negative
values of Nusselt number always being possible if " is high).

Figure 11 shows the effect of frequency on the local Nusselt number at X ¼ 1, with
" ¼ 0 and 0.5, with Pr ¼ 0.72, � ¼ 0.1 and � ¼ 1.0, 2.0 and 5.0. In this figure is
represented the evolution of NuxGrx

�1/4 vs �� in an oscillating period. Note that the
oscillation of NuxGrx

�1/4 is more intensive for high frequency values.

Conclusions
A new numerical method based on electro-thermal analogy is proposed for the
numerical solution of 2-D transient free convection flow of viscous dissipative fluid
along a semi-infinite vertical plate subjected to periodic surface temperature
oscillation. With this method, it is possible to visualise directly the evolution of the
local and/or integrated transport variables (velocities, temperatures, fluxes) at any
point or section of the medium. The time derivates are not replaced by finite differences
and the good accuracy of the method arises from an appropriate approximation of the
first time derivative using smoothing polynomials internal to Pspice.

The results are presented for the major parameters including the Prandtl number,
dissipation parameter, Nusselt number, local skin-friction coefficient, non-dimensional
frequency and non-dimensional amplitude. A systematic study on the effects of these
parameters on flow and heat transfer characteristics is carried out, the principally
deductions being the following:

. Cfx Gr3/4 increase with a decreasing of the Prandtl number and greater viscous
dissipation.

. An increase in viscous dissipation and a decrease in the Prandtl number lead to a
decrease in NuxGrx

�1/4.

. An increase in the frequency of the oscillating surface temperature lead to
greater oscillations of the Nussel number and a decrease of the oscillations of the
local skin-friction.

. Oscillations of the local skin-friction and of the Nusselt number are more
pronounced for high amplitude values.

. The inclusion of viscous dissipation in the energy equation, except of the
theoretical interest, has applications in very special cases. For example, for
Pr ¼ 1,000 and " ¼ 0.005 (realistic case) the effect of the viscous dissipation is
appreciable as X increases.
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